Conformal Hamiltonian Systems
نویسندگان
چکیده
Vector fields whose flow preserves a symplectic form up to a constant, such as simple mechanical systems with friction, are called “conformal”. We develop a reduction theory for symmetric conformal Hamiltonian systems, analogous to symplectic reduction theory. This entire theory extends naturally to Poisson systems: given a symmetric conformal Poisson vector field, we show that it induces two reduced conformal Poisson vector fields, again analogous to the dual pair construction for symplectic manifolds. Conformal Poisson systems form an interesting infinite-dimensional Lie algebra of foliate vector fields. Manifolds supporting such conformal vector fields include cotangent bundles, Lie–Poisson manifolds, and their natural quotients. © 2001 Elsevier Science B.V. All rights reserved.
منابع مشابه
Reductions of Locally Conformal Symplectic Structures and De Rham Cohomology Tangent to a Foliation
where ω is a closed 1-form. ω is uniquely determined by Ω and is called the Lee form of Ω. (M,Ω, ω) is called a locally conformal symplectic manifold. If Ω satisfies (1) then ω|Ua = d(ln fa) for all a ∈ A. If fa is constant for all a ∈ A then Ω is a symplectic form on M . The Lee form of the symplectic form is obviously zero. Locally conformal symplectic manifolds are generalized phase spaces o...
متن کاملar X iv : 0 80 3 . 12 93 v 1 [ he p - th ] 9 M ar 2 00 8 Lobachevsky geometry of ( super ) conformal mechanics
We give a simple geometric explanation for the similarity transformation mapping one-dimensional conformal mechanics to free-particle system. Namely, we show that this transformation corresponds to the inversion of the Klein model of Lobachevsky space (non-compact complex projective plane) fI CP 1 . We also extend this picture to the N = 2k superconformal mechanics described in terms of Lobache...
متن کاملar X iv : 0 80 3 . 12 93 v 2 [ he p - th ] 1 5 M ar 2 00 8 Lobachevsky geometry of ( super ) conformal mechanics
We give a simple geometric explanation for the similarity transformation mapping one-dimensional conformal mechanics to free-particle system. Namely, we show that this transformation corresponds to the inversion of the Klein model of Lobachevsky space (non-compact complex projective plane) fI CP 1 . We also extend this picture to the N = 2k superconformal mechanics described in terms of Lobache...
متن کاملMULTIPLE PERIODIC SOLUTIONS FOR A CLASS OF NON-AUTONOMOUS AND CONVEX HAMILTONIAN SYSTEMS
In this paper we study Multiple periodic solutions for a class of non-autonomous and convex Hamiltonian systems and we investigate use some properties of Ekeland index.
متن کاملDilations, models, scattering and spectral problems of 1D discrete Hamiltonian systems
In this paper, the maximal dissipative extensions of a symmetric singular 1D discrete Hamiltonian operator with maximal deficiency indices (2,2) (in limit-circle cases at ±∞) and acting in the Hilbert space ℓ_{Ω}²(Z;C²) (Z:={0,±1,±2,...}) are considered. We consider two classes dissipative operators with separated boundary conditions both at -∞ and ∞. For each of these cases we establish a self...
متن کامل